52 research outputs found

    Efficient multi-standard cognitive radios on FPGAs

    Get PDF
    Cognitive radios that support multiple standards and modify operation depending on environmental conditions are becoming more important as the demand for higher bandwidth and efficient spectrum use increases. Traditional implementations in custom ASICs cannot support such flexibility, with standards changing at a faster pace, while software baseband implementations fail to achieve the performance required. Hence, FPGAs offer an ideal platform bringing together flexibility, performance, and efficiency. This work explores the possible techniques for designing multi-standard radios on FPGAs, and explores how partial reconfiguration can be leveraged in a way that is amenable for domain experts with minimal FPGA knowledge

    Shaping spectral leakage for IEEE 802.11 p vehicular communications

    Get PDF
    IEEE 802.11p is a recently defined standard for the physical (PHY) and medium access control (MAC) layers for Dedicated Short-Range Communications. Four Spectrum Emission Masks (SEMs) are specified in 802.11p that are much more stringent than those for current 802.11 systems. In addition, the guard interval in 802.11p has been lengthened by reducing the bandwidth to support vehicular communication (VC) channels, and this results in a narrowing of the frequency guard. This raises a significant challenge for filtering the spectrum of 802.11p signals to meet the specifications of the SEMs. We investigate state of the art pulse shaping and filtering techniques for 802.11p, before proposing a new method of shaping the 802.11p spectral leakage to meet the most stringent, class D, SEM specification. The proposed method, performed at baseband to relax the strict constraints of the radio frequency (RF) front-end, allows 802.11p systems to be implemented using commercial off-the- shelf (COTS) 802.11a RF hardware, resulting in reduced total system cost

    An Efficient Data-aided Synchronization in L-DACS1 for Aeronautical Communications

    Full text link
    L-band Digital Aeronautical Communication System type-1 (L-DACS1) is an emerging standard that aims at enhancing air traffic management (ATM) by transitioning the traditional analog aeronautical communication systems to the superior and highly efficient digital domain. L-DACS1 employs modern and efficient orthogonal frequency division multiplexing (OFDM) modulation technique to achieve more efficient and higher data rate in comparison to the existing aeronautical communication systems. However, the performance of OFDM systems is very sensitive to synchronization errors. L-DACS1 transmission is in the L-band aeronautical channels that suffer from large interference and large Doppler shifts, which makes the synchronization for L-DACS more challenging. This paper proposes a novel computationally efficient synchronization method for L-DACS1 systems that offers robust performance. Through simulation, the proposed method is shown to provide accurate symbol timing offset (STO) estimation as well as fractional carrier frequency offset (CFO) estimation in a range of aeronautical channels. In particular, it can yield excellent synchronization performance in the face of a large carrier frequency offset.Comment: In the proceeding of International Conference on Data Mining, Communications and Information Technology (DMCIT

    Stakeholder Delphi-perception analysis on impacts and responses of acid rain on agricultural ecosystems in the Vietnamese upland

    Get PDF
    Vietnam is one of most vulnerable countries to acid rain in Asia. In the Vietnamese Northern Mountains, acid rainwater affects negatively to local agricultural ecosystems. This paper analyzes how major agricultural stakeholders living in the mountains assess the impacts of acid rain and their responses on agricultural ecosystems. A two-round Stakeholder Delphi combined with the pressure-state-response (PSR) model allows ranking effects, mitigation and adaptation measures. Eight themes, 14 sub-themes, and 35 indicators for acid rain are structured in the PSR model. The results show that deforestation and rainfall variability relate to changes in the concentrations of acid ions in rainwater. Energy consumption in the industry and transportation, chemical fertilizer use in agriculture, and air pollution from neighboring areas contribute significantly to acid rain. Acid rain affects agriculture and decreases crop yields, causes arable land loss, reduces nutrients and organic matter, and accumulates heavy metals. Panel members perceive that applying local knowledge in agricultural practices, rational energy use, promotion of integrated agricultural policies, and changing farmer behaviors are measures to mitigate acid rain and its adverse effects. The results contribute to a vision on local adaptation actions and policy to foster the capacity and the resilience of major local group

    An End-to-End Multi-Standard OFDM Transceiver Architecture Using FPGA Partial Reconfiguration

    Get PDF
    Cognitive radios that are able to operate across multiple standards depending on environmental conditions and spectral requirements, are becoming more important as the demand for higher bandwidth and efficient spectrum use increases. Traditional custom ASIC implementations cannot support such flexibility, with standards changing at a faster pace, while software implementations of baseband communication fail to achieve performance and latency requirements. Field programmable gate arrays (FPGAs) offer a hardware platform that combines flexibility, performance, and efficiency, and hence they have become key in meeting the requirements for flexible standards-based cognitive radio implementations. This paper proposes a dynamically reconfigurable end-to-end transceiver baseband that can switch between three popular OFDM standards, IEEE 802.11, IEEE 802.16 and IEEE 802.22, operating in non-contiguous fashion with rapid switching. We show that com- bining FPGA partial reconfiguration with parameterised modules offers a reduction in reconfiguration time of 71% and a FIFO size reduction of 25% compared to conventional approaches, and provides the ability to buffer data during reconfiguration to prevent link interruption. The baseband exposes a simple interface which maximises compatibility with different cognitive engine implementations

    Spectrally efficient emission mask shaping for OFDM cognitive radios

    Get PDF
    Orthogonal Frequency Division Multiplexing has been widely adopted in recent years due to its inherent spectral efficiency and robustness to impulsive noise and fading. For cognitive radio applications in particular, it can enable flexible and agile spectrum allocation, yet suffers from spectral leakage in the form of large side lobes, leading to inter-channel interference, unless mitigated carefully. Hence, recent OFDM-based standards such as 802.11p for vehicular communication and 802.11af for TV whitespace impose strict spectrum emission mask limits to combat adjacent channel interference. Stricter masks allow channels to operate closer together, improving spectral efficiency at the cost of implementation difficulty. Meeting the strict limits is a significant challenge for implementing both 802.11p and 802.11af, yet remains an important requirement for enabling cost-effective systems. This paper proposes a novel method that embeds baseband filtering within a cognitive radio architecture to meet the specification for the most stringent 802.11p and 802.11af masks, while allowing ten 802.11af sub-carriers to occupy a single basic channel without violating SEM specifications. The proposed method, performed at baseband, relaxes otherwise strict RF filter requirements, allowing the RF subsystem to be implemented using much less stringent 802.11a designs, allowing cost reductions

    Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis

    Get PDF
    BACKGROUND Tuberculous meningitis is often lethal. Early antituberculosis treatment and adjunctive treatment with glucocorticoids improve survival, but nearly one third of patients with the condition still die. We hypothesized that intensified antituberculosis treatment would enhance the killing of intracerebral Mycobacterium tuberculosis organisms and decrease the rate of death among patients. METHODS We performed a randomized, double-blind, placebo-controlled trial involving human immunodeficiency virus (HIV)-infected adults and HIV-uninfected adults with a clinical diagnosis of tuberculous meningitis who were admitted to one of two Vietnamese hospitals. We compared a standard, 9-month antituberculosis regimen (which included 10 mg of rifampin per kilogram of body weight per day) with an intensified regimen that included higher-dose rifampin (15 mg per kilogram per day) and levofloxacin (20 mg per kilogram per day) for the first 8 weeks of treatment. The primary outcome was death by 9 months after randomization. RESULTS A total of 817 patients (349 of whom were HIV-infected) were enrolled; 409 were randomly assigned to receive the standard regimen, and 408 were assigned to receive intensified treatment. During the 9 months of follow-up, 113 patients in the intensified-treatment group and 114 patients in the standard-treatment group died (hazard ratio, 0.94; 95% confidence interval, 0.73 to 1.22; P=0.66). There was no evidence of a significant differential effect of intensified treatment in the overall population or in any of the subgroups, with the possible exception of patients infected with isoniazid-resistant M. tuberculosis. There were also no significant differences in secondary outcomes between the treatment groups. The overall number of adverse events leading to treatment interruption did not differ significantly between the treatment groups (64 events in the standard-treatment group and 95 events in the intensified-treatment group, P=0.08). CONCLUSIONS Intensified antituberculosis treatment was not associated with a higher rate of survival among patients with tuberculous meningitis than standard treatment. (Funded by the Wellcome Trust and the Li Ka Shing Foundation; Current Controlled Trials number, ISRCTN61649292.)

    Novel Enzyme Actions for Sulphated Galactofucan Depolymerisation and a New Engineering Strategy for Molecular Stabilisation of Fucoidan Degrading Enzymes

    Get PDF
    Fucoidans from brown macroalgae have beneficial biomedical properties but their use as pharma products requires homogenous oligomeric products. In this study, the action of five recombinant microbial fucoidan degrading enzymes were evaluated on fucoidans from brown macroalgae: Sargassum mcclurei, Fucus evanescens, Fucus vesiculosus, Turbinaria ornata, Saccharina cichorioides, and Undaria pinnatifida. The enzymes included three endo-fucoidanases (EC 3.2.1.-GH 107), FcnA2, Fda1, and Fda2, and two unclassified endo-fucoglucuronomannan lyases, FdlA and FdlB. The oligosaccharide product profiles were assessed by carbohydrate-polyacrylamide gel electrophoresis and size exclusion chromatography. The recombinant enzymes FcnA2, Fda1, and Fda2 were unstable but were stabilised by truncation of the C-terminal end (removing up to 40% of the enzyme sequence). All five enzymes catalysed degradation of fucoidans containing α(1→4)-linked l-fucosyls. Fda2 also degraded S. cichorioides and U. pinnatifida fucoidans that have α(1→3)-linked l-fucosyls in their backbone. In the stabilised form, Fda1 also cleaved α(1→3) bonds. For the first time, we also show that several enzymes catalyse degradation of S. mcclurei galactofucan-fucoidan, known to contain α(1→4) and α(1→3) linked l-fucosyls and galactosyl-β(1→3) bonds in the backbone. These data enhance our understanding of fucoidan degrading enzymes and their substrate preferences and may assist development of enzyme-assisted production of defined fuco-oligosaccharides from fucoidan substrates
    • …
    corecore